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Abstract. The microscopic Ising-like model of the order–disorder phase transition in improper
ferroelastic crystals is presented. For such a system, the spin–strain coupling can be written in terms
of four-spin interactions. Three-dimensional Monte Carlo simulation shows that for a certain
strength of the four-spin interaction the system is close to the tricritical point. The calculated
temperature dependence of the order parameter is in very good agreement with the experimental
data for RbSCN. The results also show that the growth of the size of precursor clusters is suppressed
when approachingTc from below, whereas the order parameter susceptibility is increasing. This is
in good agreement with the diffuse neutron scattering data on RbSCN and KSCN, which yield an
increase of the diffuse intensity with increasing temperature belowTc, whereas its width remains
constant throughout the whole ordered phase. These results show that elastic effects can stabilize
the precursor clusters at the order–disorder phase transition belowTc.

1. Introduction

A great variety of molecular crystals exhibit order–disorder phase transitions with reorient-
ations of molecules. As an example, in the case of the MSCN family (M= K, Rb, NH4, . . .) the
phase transition is related to the ordering of linear semirigid SCN molecules, which are
orientationally disoriented in the high-temperature phase [1]. The reorientation of SCN ions
leads to the structural change from the low-temperature orthorhombic phase to the tetragonal
phase above the transition temperatureTc = 413 K [1]. For that family of crystals a strong
order parameter–strain coupling was found. The coupling is due to symmetry of the typeη2ε.
All MSCN crystals exhibit phase transitions which can be classified as first-order ones.

For solids the experimental investigations suggest that the strong coupling between the
order parameterη (in MSCN, η is related to the orientation of SCN ions) and the lattice
strainsε leads to a so-called strain-induced first-order phase transition. There are various
ways to study this point. One approach comes from the Landau–Ginzburg theory, where
the free energy is expanded in powers of the order parameter, and the gradient term of the
spatial inhomogeneity of the order parameter is taken into account in successive applications
of perturbation theory [2, 3]. Another approach comes from the mean-field theories, where
microscopic models are subject to spatial averaging [3, 4]. The mechanism of these strain-
induced first-order phase transitions, especially closely belowTc, is still not fully understood.
For KSCN and RbSCN we have previously measured the temperature dependence of the
diffuse neutron scattering intensity [5,6]. We found an increase of the diffuse intensity when
approachingTc from below, whereas the width remains constant over the whole long-range-
ordered phase. This effect contradicts the well known models, for which the temperature
dependence of the diffuse intensity at the critical wave vectorI (qc) and its widthξ(r)−1 are
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coupled, i.e.Id(q̄c) ∼ ξ2(T ). However, molecular dynamics simulations on a two-dimensional
KSCN model have nicely reproduced this kind of behaviour [7,8], and we concluded that the
size of the precursor clusters is stabilized by the order parameter–strain interactions. To test
this behaviour within a different approach, we performed three-dimensional Monte Carlo
simulations of the pseudospin model of MSCN crystals and compared the results with the
experimental data.

The outline of the paper is as follows. In section 2 we present the pseudospin formulation
of the model of RbSCN, together with its computational adaptation. The main results of the
simulations are presented in section 3, and a brief summary is given in section 4.

2. The model

2.1. The pseudospin model

The low-temperature phase of MSCN crystals hasPbcm symmetry and contains four
molecules per unit cell(Z = 4). The atoms form a layered structure, with layers aligned
in (a, b) planes. As an example, the(a, b) plane projection of the orthorhombic unit cell of
RbSCN is presented in figure 1. BelowTc the SCN molecules are orientationally ordered in
the(a, b) plane as indicated by arrows in figure 1. They occupy two layers located atc = 1

4

and 3
4 respectively. The Rb atoms shown in figure 1 as circles are placed atc = 0 andc = 1

2
respectively. In the high-temperature phase the unit cell changes to a body-centred-tetragonal
one withZ = 2 and the SCN ions become orientationally disordered.

Figure 1. A sketch of the(a, b) plane of the unit cell of RbSCN. Arrows represent SCN ions and
circles show the positions of Rb atoms.

The phase transition in KSCN and RbSCN crystals was previously successfully described
in the language of the pseudospin model which was calculated in the mean-field approximation
[1, 4]. The model consists of four spinsσ I (I = 1, 2, 3, 4) in each unit cell, representing
four SCN ions. For such a system the compressible pseudospin Hamiltonian can be written in
terms of volume-dependent interaction constants as proposed in [4]:

H = −1

2

∑
αβ

∑
R,R′

[
Jα,β(R,R

′) + J να,β(R,R
′)εν

]
σα(R)σβ(R′) +

1

2

∑
ν

Cνε
2
ν (1)

whereJα,β andJ να,β denote the coupling constants for spins,σα(R) is the spin variable,R is
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the position vector of the spinσα, α, β = 1, 2, 3, 4 label the spin variables within the unit
cell, theCν are the elastic constants, and theεν are the corresponding strains. Since in the
high-temperature phase the spins 1, 4 and 2, 3 are perpendicular, there is no coupling between
them and the corresponding interaction terms vanish, i.e.J13 = J24 = J12 = J34 = 0. Thus,
neglecting elastic coupling, there are two independent sublattices in the system, i.e.,σ 1–σ 4 and
σ 2–σ 3. However, for nonzero order parameter–strain coupling, the two sublattices become
unified. Assuming that in the equilibrium state all strains are homogeneous, one can use the
equilibrium condition∂H/∂ε = 0, which leads to the following form of Hamiltonian (1):

H = −1

2

∑
α,β

∑
R,R′

Jα,β(R,R
′)σ α(R)σβ(R′)

− 1

2

∑
ν

1

Cν

[∑
α,β

∑
R,R′

J να,β(R,R
′)σ α(R)σβ(R′)

]2

(2)

which, besides two-spin interactions, also includes the four-spin terms and the renormalized
coupling constants.

2.2. The computational model

The present model used in our simulation (see figure 2) is a simple adaptation of the pseudospin
model in which the interaction is limited to the nearest neighbours in each spin sublatticeσ I

(I = 1, 2, 3, 4), i.e. nearest-neighbour interactions betweenσ 1–σ 4 andσ 2–σ 3, and the four-
spin interactions within each unit cell are included. The Hamiltonian of the model reads

H = −
∑

α=1,2,3,4

(∑
i,j,k

Jσαi,j,kσ
α
i ′,j ′,k′

)
−
∑
α,α′

(∑
l,m,n

J1σ
α
l,m,nσ

α′
l′,m′,n′

)
−
∑
i,j,k

J4σ
1
i,j,kσ

2
i,j,kσ

3
i,j,kσ

4
i,j,k (3)

where the first sum runs over the nearest neighbours for each subspin systemσα, andJ denotes
the interaction constant:J = Jαα(R,R′) (α = 1, 2, 3, 4;R = (i, j, k); R,R′ run over nearest
neighbours). The second sum represents the interaction betweenσ 1–σ 4 and σ 2–σ 3 with
coupling constantJ1 = Jαβ(R,R

′) (αβ = 14, 23;R,R′ run over the nearest neighbours
between different pairs of spins within each of the sublattices). The last term describes the

Figure 2. A sketch of the computer model. Spins fromσ 1- andσ 4-sublattices (left) are artificially
separated from spins fromσ 2- andσ 3-sublattices (right) for clarity. Spins from one corner of each
cube form the unit cell.
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four-spin interaction which covers theplaquettesextended to the spins within each unit cell,
and the interaction constant isJ4 = Jαα(R,R) for σα with α = 1, . . . ,4.

In such a formulation the model resembles the well known Ising model with four-spin
interaction [9]. The purpose of the present work is rather to employ the model to capture some
microscopic properties which could be comparable to the experimental data measured for a
system like RbSCN or KSCN. We should briefly mention that, besides the complication of the
nonuniversal behaviour [9, 11] of those kinds of model, numerous authors found that a first-
order phase transition occurs in the system whenever the four-spin interaction is strong enough
or even in a system with only first- and second-neighbour interaction [12]. In particular,
we must mention the detailed analysis by Bolton and co-workers [13], in which different
approaches point to the existence of a first-order transition in the region of strong four-spin
coupling. Quite recently, a phase diagram obtained by the cluster-variation method [14] has
shown the occurrence of several regions in the parameter space where a first-order phase
transition and re-entrant phenomena occur. Most theoretical papers on that model are limited
to the two-dimensional version of the system, and as far as we are aware the computational
results are also very limited [17].

A detailed mean-field analysis of the Hamiltonian (1) was presented in [4], and the
interested reader is asked to refer to this paper. For our purpose, the important facts are
that we can introduce the four-component order parameter [4] as follows:

η1 = 1
4(〈σ 1〉 + 〈σ 2〉 + 〈σ 3〉 + 〈σ 4〉)

η2 = 1
4(〈σ 1〉 − 〈σ 2〉 − 〈σ 3〉 + 〈σ 4〉)

η3 = 1
4(〈σ 1〉 + 〈σ 2〉 − 〈σ 3〉 − 〈σ 4〉)

η4 = 1
4(〈σ 1〉 − 〈σ 2〉 + 〈σ 3〉 − 〈σ 4〉)

(4)

where the〈σα〉 are averages over each sublattice. Only two cases of ordering are physically
significant. They correspond toη1 6= 0 andη2 6= 0 together withη3 = η4 = 0. Here,
η1 6= 0 corresponds to antiferroelectric ordering, whileη2 6= 0 corresponds to ferroelectric
ordering. Depending on the sign of the interaction constantJ1, the ground state of the model
is ferroelectric or antiferroelectric. On the other hand, a negative four-spin interactionJ4 can
move the critical temperature to 0 K only if J4 > −(J + 4

3J1).
Within the mean-field approximation it was shown [4] that the present model possesses

a first-order phase transition whenever the four-spin interaction is strong enough. Although
a mean-field treatment of the model yields a proper description of quantities such as the
susceptibility and the diffuse scattering intensity over a wide range of temperature around the
phase transition, it neglects any microscopic effects, which could be crucial in the disordering
processes (see, e.g., [7]). In particular, it does not describe the anomalous temperature
behaviour of the correlation length belowTc as measured for KSCN [7] and RbSCN [6].

3. Results

The Monte Carlo simulations were performed on a three-dimensionalL× L× L lattice with
periodic boundary conditions. The linear sizes of the model extended fromL = 15 toL = 36
unit cells, with the total number of spinsN = 4L3 ranging from 13 500 to 186 624 for the largest
lattice. The standard formulation of Metropolis sampling was applied with up to 0.8× 106

MC steps per spin for each temperature in the critical region. For each temperature, 50 000
sweeps were rejected, and the remaining data were recorded in intervals ranging from 20 to
100 sweeps for the largest lattice. The thermodynamic averages for the order parameter and
internal energy were calculated as statistical averages over limited numbers of configurations
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for which the system was sampled. Thermodynamic response functions were calculated in the
standard way from fluctuations.

Since the numerical calculations were made for finite systems, one has to perform a basic
finite-size scaling to obtain any insight into the thermodynamic behaviour. According to the
finite-size scaling theory, the free energy of the system is given by the scalingansatz

F(L, T ) = L−9F 0(L1/µt).

The finite-size scaling of the free energy leads to the scaling relations for the bulk properties. An
additional problem appears if one has to determine precisely the nature of the phase transition,
i.e., first versus second order. In the first stage we performed the simulations for the limiting
case ofJ1 = J4 = 0. For these parameters the system should be equivalent to four independent
Ising lattices. Indeed, the system undergoes a phase transition atTc = 0.22(1) and the order
parameter exponent evaluated for this case wasβ = 0.32(1) [15], which within the accuracy of
our simulations allows us to place the limit case of the model in the 3D Ising universality class.

Figure 3. (a) The energy per spin distribution for different lattice sizes and the temperature
T = 0.97Tc. (b) The energy distribution atT = 0.995Tc together with a fitted double-Gaussian
distribution. The two overlapping Gaussians are shown for clarity. The curve is a guide to the eyes.
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For this case the phase transition is of second order. Since we are interested in a regime where
the system possesses a first-order phase transition which is close to continuous—i.e., near the
tricritical point—we have chosen the following parameters for the rescaled HamiltonianH/J :
J1/J = 0.5 andJ4/J = 2.0. For thisansatzwe obtained the following results. For a finite
system at a certain temperature, the energy per particle does not have a Dirac delta distribution,
but a Gaussian one instead. Such energy distributions can be described by [16]

P(E) = A√
C

exp

(
(E − E0)

2Ld

2kBT 2C

)
. (5)

C is the specific heat andd the dimensionality of the system. The width of the peak decreases
with increasing system size. The energy distribution obtained from the present simulation is
depicted in figure 3(a). One can easily see the expected behaviour, and the calculated exponent
is equal tox = 2.96, which is fairly close tox = d = 3. The first-order phase transition is
characterized by the phase coexistence close to the transition point. This results in a double

Figure 4. (a) The temperature dependence of the Binder parameterVL. The transition temperature
is compared to the 3D Ising one. (b) The specific heatCV for different lattice sizes. The curves
are guides to the eyes.
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peak of the energy distribution close toTc. In our simulations, the energy distribution in the
vicinity of transition point can be well fitted by two Gaussians (see figure 3(b)). The energy
ratio between the low- and high-temperature phases estimated from fits equalsE1/E2 = 0.05
which is indeed small, but still nonzero. The small energybarrier between phases admits a
weaklyfirst-order phase transition, which is very close to the tricritical point. To determine
the nature of the phase transition and the transition temperature, we used the standard method
based on the scaling behaviour of the so-called Binder parameter, which is defined as [17]

VL = 1− 〈E
4〉L

3〈E2〉2L
. (6)

The Binder parameter has no specific physical meaning; however, it is very useful in the
simulations, since it behaves differently for first- and second-order phase transitions. In the
case of first-order transitions, the Binder parameter possesses definite minima atTc equal
to [16]

VL(Tc) = 1− 2(E4
+ +E4

−)
3(E2

+ +E2−)2
.

For the present set of parameters,VL should approach the valueVL(Tc) = 0.665. Far away
fromTc, the limit value isVL = 2

3. The scaling property ofVL is presented in figure 4(a), where
one can see good agreement with the data from the energy distribution. The sharp minimum
atTc indicates that the phase transition is of first order (weak and broad minima are expected
for the second-order transitions). The specific heat was calculated as

C/k = β2(〈E2〉 − 〈E〉2)/V
and is presented in figure 4(b). With increasing system size, the peak narrows and its height
increases; however, the asymmetry with respect toTc does not vanish.

3.1. Experimental and simulation data

The order–disorder phase transition in RbSCN was previously investigated with diffuse
scattering techniques—for details see [6]—and using birefringence measurements. The

Figure 5. Comparison of the order parameter temperature dependence.5: neutron data;�: the
birefringence;◦: MC points.
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temperature dependence of the birefringence was measured with a tilting compensator [18].
Figure 5 shows the temperature dependence of the Bragg intensity of the superlattice reflections
normalized to the birefringence data1nab. One should notice that both quantities vanish in
the tetragonal high-symmetry phase. It can be shown that they are both proportional to the
square of the long-range-order parameterη, i.e. IB(qc) ∝ η2 andδnab = na − nb ∝ η2 [1].
The temperature dependence of the order parameterη1, which is presented in figure 5, was
obtained for simulations for a system withL = 27 unit cells, and rescaled for comparison
with the experimental points. The rounding atTc is due to the finite size of the system. The
good agreement between the experimental and numerical points encouraged us to analyse
the fluctuation behaviour of the system also. We used a simple cluster accounting based
on decomposing the spin configuration into a Swendsen–Wang (multiple) cluster [15] to
determine the sizes of the ordered regions belowTc. All of the unit cells were divided into

Figure 6. (a) The average size〈ξ〉 of the clusters of symmetry different to that of the primary
matrix for temperatures belowTc. The inset shows〈ξ〉 obtained for the couplingJ4 = J1 = 0.
(b) The temperature dependence of the order parameter susceptibilityξ . The curve is a guide to
the eyes.
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clusters according to the value of the local order parametersη1 andη2. Then the volumes of
the clusters were sorted into a histogram. The procedure was applied throughout the whole
run for each temperature, and the histograms were then averaged. As a result we obtained
a distribution of locally ordered regions, which is approximated by a Gaussian. Then we
calculated the temperature dependence of the average size〈ξ〉 of clusters belowTc, which is
presented in figure 6(a). The average size for the limit case (J1 = J4 = 0) is presented in
the inset. In contrast to the monotonic increase of〈ξ〉 with temperature for the Ising system
(J1 = J4 = 0), the average cluster size saturates well belowTc for J1 6= J4 6= 0. Figure 6(b)
shows the temperature dependence of the order parameter susceptibilityχ(T ). According to
the fluctuation-dissipation theorem,χη is proportional to the diffuse scattering intensityId(qc).
In contrast to the cluster size,χη(T ) increases forT → T −c andT → T +

c , and exhibits a jump
atTc.

4. Conclusions

We adapted the compressible pseudospin model of the order–disorder phase transition in
RbSCN to study microscopic processes of disordering in the vicinity of the transition point.
In such a model the influence of the homogeneous elastic strains is equivalent to the effective
four-spin interaction. In our Monte Carlo simulation, three-dimensional geometry was used.
For the present choice of parameters, the inclusion of next-nearest neighbours and the four-
spin interaction results in a first-order phase transition. In the vicinity ofTc, finite-size
scaling analysis indicates a very small energy difference between the configurations of the
two phases, i.e. the system is very close to a tricritical point. The set of parameters applied
in the simulations leads to a fairly good representation of the behaviour of the experimentally
measured temperature dependence of the order parameter for RbSCN. The analysis of the
distribution of ordered precursor clusters at temperatures belowTc indicates that the average
size of the fluctuations increases at temperatures starting fromT = 0.9Tc, then saturates for
temperatures aboveT = 0.96Tc. In contrast, the calculated order parameter susceptibility
increases monotonically when approachingTc from below and displays a jump atTc, as
expected for a first-order phase transition. In fact, the present MC simulations describe the
diffuse neutron scattering data for RbSCN and KSCN very well. For both crystals the diffuse
neutron scattering intensityId(qc) (∝χη) increases when approachingTc from below, whereas
its widthw (∝〈ξ−1〉) remains constant. From the 3D MC simulations presented here, and from
recent 2D MD simulations, we can conclude that inhomogeneous elastic strain interactions are
responsible for the stabilization of the precursor clusters in KSCN and RbSCN. However, it
is difficult to explain such behaviour in terms of an analytic model. For example, in Landau–
Ginzburg models the temperature dependencies of the order parameter susceptibilityχη(q)

and the correlation lengthξ (∝ size of the precursor clusters) are coupled, i.e.χ(qc) ∝ ξ2,
and both quantities increase with increasing temperature belowTc. Therefore, at present we
cannot give a definite answer as regards the exact mechanism for this strong suppression of
the correlation length belowTc.

Acknowledgments

The present work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung
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